

DBCO PEG Protocol

$$R_1$$
 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_1 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8

Procedure

To a solution of A (25 mg, 78.3 Gmol) in 0.1 mL of EtOH/H₂O (3:2) was added a solution of B (20 mg, 78.3 Gmol) in 0.1 mL of EtOH/H₂O (3:2). The reaction mixture was stirred for 60 min at room temperature. The aqueous layer was extracted with ethyl acetate (3 \times 10 mL). The combined organic layers were then dried over MgSO₄ and concentrated under reduced pressure. The residue was then purified by flash column chromatography (CH₂Cl₂/methanol, 9:1) to obtain C, both isomers of the triazole were collected and treated as one compound. Yield (35 mg, 78%).

To a solution of A (0.32 mg, 1.0 Gmol) in 0.1 mL of EtOH/H₂O (3:2) was added a solution of [18F]B (481 MBq) in 0.1 mL of EtOH/H₂O (1:1). The reaction mixture was stirred for 15 min at room temperature. The reaction was monitored by radio-TLC. The crude compound was injected onto reverse-phase HPLC and purified. The desired compound [18F]C was collected from HPLC (tR = 12.9 min; C 18 silica gel, 10 Gm, 10 × 250 mm; 0.1% TFA in H₂O/acetonitrile = 30:70 (v/v); 254 nm; 2 mL/min). The total synthesis time of [18F]3 was 35 min, and the decay-corrected radiochemical with > 98% radiochemical purity. Both isomers of the triazole were collected and treated as one compound. Specific activity was estimated by comparing UV peak intensity of the purified [18F]-labeled compound with reference non-radioactive compounds of known concentrations. The specific activity of [18F]3 (42 GBq/Gmol) was obtained after purification on the HPLC column. Yield 93%.

Reference:

Sachin, Kalme et al., Bioconjugate Chemistry, 23(8), 1680-1686; 2012.