Citations

Citations


At BroadPharm, we take pride in supporting thousands of global customers in their cutting-edge R&D endeavors, spanning new drug discovery, drug delivery, diagnostics, and various biomedical disciplines. Our commitment to delivering innovative, high-quality products and heartfelt service has garnered recognition, with numerous publications citing the use of BroadPharm products across a diverse range of research domains.

Catalog# Product Name Citations
BP-23760DBCO-NHCO-PEG4-acidHolder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020.
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9
BP-23760DBCO-NHCO-PEG4-acidHolder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2016
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db5
BP-21605Azido-PEG3-NHS esterJames MK, Alejandro AC, Shashikanth P, et al. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. The Journal of Nuclear Medicine. 2018 Dec..
http://jnm.snmjournals.org/content/early/2018/12/13/jnumed.118.221150.long
BP-21606Azido-PEG8-NHS esterKelly JM, Amor-Coarasa A, et al. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. The Journal of Nuclear Medicine. 2018.
http://jnm.snmjournals.org/content/early/2018/12/13/jnumed.118.221150.long
BP-22156Mal-amido-PEG2-NHSKirstin AZ, Christopher MW, Wen-Ting KT, et al. A dual-modality linker enables site-specific conjugation of antibody fragments for 18F-immunoPET and fluorescence imaging. The Journal of Nuclear Medicine. 2019 March; 60(7).
http://jnm.snmjournals.org/content/early/2019/03/14/jnumed.118.223560.abstract
BP-22776Bis-Mal-PEG19Kasikara C, Kumar S, et al. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression. Molecular Cancer Research. 2017. 15(6). pp. 753-764.
http://mcr.aacrjournals.org/content/molcanres/early/2017/04/25/1541-7786.MCR-16-0350.full.pdf
BP-22477Diazo Biotin-PEG3-azideSchonhoft JD, Monteiro C, et al. Peptide Probes Detect Misfolded Transthyretin Oligomers in Plasma of Hereditary Amyloidosis Patients. Science Translational Medicine. 2017. 9(407).
http://stm.sciencemag.org/content/9/407/eaam7621/tab-pdf
BP-22418TCO-PEG4-NHS esterWhitney S, Craig B, et al. Ferritin as a Natural Protein Scaffold: Building a Multivalent Ferritin-Fab Conjugate. Chromatography Online. 2019. 37(11). pp. 30-35.
http://www.chromatographyonline.com/ferritin-natural-protein-scaffold-building-multivalent-ferritin-fab-conjugate?pageID=1
BP-22418TCO-PEG4-NHS esterBohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2022
https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07761
BP-22418TCO-PEG4-NHS esterModhiran, Naphak, Simon Malte Lauer, Alberto A. Amarilla, Peter Hewins, Sara Irene Lopes van den Broek, Yu Shang Low, Nazia Thakur A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. Iscience . 2023
https://www.sciencedirect.com/science/article/pii/S2589004223011628
BP-22418TCO-PEG4-NHS esterModhiran, N., Lauer, S. M., Amarilla, A. A., Hewins, P., van den Broek, S. I. L., Low, Y. S., ... & Watterson, D. (2023). A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. Iscience, 26(7), 107085.
https://www.sciencedirect.com/science/article/pii/S2589004223011628
BP-22418TCO-PEG4-NHS esterAlshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231.
https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849
BP-23874Azido-PEG4-hydrazide HCl SaltAragon-Sanabria, Virginia, Anusha Aditya, Li Zhang, Feng Chen, Barney Yoo, Tianye Cao, Brian Madajewski Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clinical Cancer Research. 2022
https://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.CCR-21-4053/3151261/ccr-21-4053.pdf
BP-20571Amino-PEG3-amineLuo Q, Napoleon JV, et al Targeted Rejuvenation of Exhausted Chimeric Antigen Receptor T-cells Regresses Refractory Solid Tumors. Molecular Cancer Research. 2022
https://aacrjournals.org/mcr/article/doi/10.1158/1541-7786.MCR-21-0711/678413/Targeted-Rejuvenation-of-Exhausted-Chimeric
BP-20524Azido-PEG2-NHS esterLiu K, Lat PK, et al CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne ‘click’ reaction in water. Nucleic Acids Research. 2020. 48(13). pp. 7256-7370
https://academic.oup.com/nar/article/doi/10.1093/nar/gkaa502/5855639
BP-20524Azido-PEG2-NHS esterMengzhe W, Christopher DM, Hui W, et al. The efficiency of 18F labelling of prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity. The Royal Society of Chemistry. 2018.
https://pdfs.semanticscholar.org/22f6/b8df3e348b76c8c3fc4cfe6adc8c0e237e1f.pdf
BP-21635t-Boc-N-amido-PEG4-acidDewaele-Le Roi, Guillaume Second Generation Phenyloxadiazolyl Methyl Sulfones for Thiol-Specific Bioconjugations. CUNY Academic Works. 2023
https://academicworks.cuny.edu/gc_etds/5162/
BP-21635t-Boc-N-amido-PEG4-acidVan der Beelen SHE, Agten SM, et al. Design and synthesis of a multivalent catch-and-release assay to measure circulating FXIa. Thrombosis Research. 2021. 200. pp. 16-22.
https://www.thrombosisresearch.com/article/S0049-3848(21)00010-4/fulltext
BP-22960DBCO-NHCO-PEG13-NHS esterKin MA, Steven IP, et al Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Science Advances. 2020. 6(27)
https://advances.sciencemag.org/content/6/27/eaba8564.full
BP-25711ALC-0159Lewis, M. M., Soto, M. R., Maier, E. Y., Wulfe, S. D., Bakheet, S., Obregon, H., & Ghosh, D. (2023). Optimization of ionizable lipids for aerosolizable mRNA lipid nanoparticles. Bioengineering & Translational Medicine, e10580.
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/btm2.10580
BP-21503Amino-PEG12-alcoholBanlaki I, Lehr FX, et al Microfluidic production of porous polymer cell-mimics capable of gene expression. arXiv. 2021
https://arxiv.org/ftp/arxiv/papers/2101/2101.07135.pdf
BP-21503Amino-PEG12-alcoholLei Z, Ying M, Dale OK, et al. Rational Design of Matrix Metalloproteinase-13 Activatable Probes for Enhanced Specificity. ACS Chemical Biology. 2014; 9(2): pp. 510-516.
https://pubs.acs.org/doi/abs/10.1021/cb400698s
BP-22066DBCO-amineMaciej K, Lin L, Supriyo B, et al. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell Engaging antibodies) for cellular immunotherapy.  BMC Cancer. 2019 September; 19 (882).
https://bmccancer.biomedcentral.com/track/pdf/10.1186/s12885-019-6056-8
BP-22066DBCO-amineLwin, Thinzar M., Megan Minnix, Lin Li, Anakim Sherman, Teresa Hong, Jeffery YC Wong, Tove Olafsen Multimodality PET and Near-Infrared Fluorescence Intraoperative Imaging of CEA-Positive Colorectal Cancer.. Molecular Imaging and Biology. 2023
https://link.springer.com/article/10.1007/s11307-023-01831-8
BP-22066DBCO-amineNakata N, Kobashi N, et al. Radiation dosimetry and efficacy of an 89Zr/225Ac-labeled humanized anti-MUC5AC antibody. Nuclear Medicine and Biology. 2022. 108-109. pp. 33-43.
https://www.sciencedirect.com/science/article/pii/S0969805122000221
BP-22535Cy3 NHS esterHara, Yoshika, Atsuya Yaguchi, Hirotsugu Hiramatsu, and Takahiro Muraoka. ROS-Triggered Gel-Sol Transition and Kinetics-Controlled Cargo Release by Methionine-Containing Peptides. ChemBioChem. 2023
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202200798
BP-22535Cy3 NHS esterFeiner IVJ, Pulagam KR, et al. Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. Journal of Materials Chemistry B. 2021. 9(2). pp. 410-420.
https://pubs.rsc.org/en/content/articlelanding/2021/tb/d0tb01880e/unauth
BP-20631m-PEG4-azideEriksson, Camilla, Sunithi Gunasekera, Taj Muhammad, Mingshu Zhang, Ida Laurén, Sara M. Mangsbo, Martin Lord, and Ulf Göransson Epitopes displayed in a cyclic peptide scaffold bind SARS-CoV-2 antibodies.. ChemBioChem. 2023
https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202300103
BP-22288DBCO-PEG4-NHS esterStuder, Tetiana, Daria Morina, Inga S. Shchelik, and Karl Gademann.  Biohybrid Microswimmers for Antibiotic Drug Delivery Based on a Thiol-Sensitive Release Platform. Chemistry-A European Journal. 2023
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202203913
BP-22288DBCO-PEG4-NHS esterMauser, Ava, Daniel F. Quevedo, Boya Zhang, Yazmin Hernandez, Anthony Berardi, William Brown, Sophia Lee Enzyme-based Synthetic Protein Nanoparticles as Colloidal Antioxidants. Advanced Therapeutics. 2023
https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300007
BP-22288DBCO-PEG4-NHS esterKrishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102.
https://www.mdpi.com/1999-4923/16/1/102
BP-23768endo-BCN-PEG8-acidHolder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2017
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db6
BP-23768endo-BCN-PEG8-acidHolder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020.
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9
BP-22420TCO-PEG4-acidHolder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2018
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db7
BP-22420TCO-PEG4-acidHolder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020.
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9
BP-21118m-PEG8-thiolHolder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2019
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db8
BP-21118m-PEG8-thiolHolder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020.
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9
BP-21118m-PEG8-thiolJiang Z, Cui W, et al. Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery. Industrial & Engineering Chemistry Research. 2019, 58(17). pp. 6982-6991.
https://pubs.acs.org/doi/full/10.1021/acs.iecr.9b00666
BP-21111m-PEG8-amineHolder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020
https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9
BP-21627Fmoc-N-amido-PEG2-acidUpadhya, Rahul, Matthew Tamasi, Elena Di Mare, Sanjeeva Murthy, and Adam Gormley Data-Driven Design of Protein-Like Single-Chain Polymer Nanoparticles. ChemRxiv. 2022
https://chemrxiv.org/engage/chemrxiv/article-details/631f37eabe03b23be6f3014d
BP-21627Fmoc-N-amido-PEG2-acidTong, Y., Gu, M., Luo, X., Qi, H., Jiang, W., Deng, Y., ... & Hu, Y. (2023). An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy. Journal of Controlled Release, 363, 562-573.
https://www.sciencedirect.com/science/article/abs/pii/S0168365923006557
BP-22423TCO-PEG12-DBCOTapia, A. R., Abgottspon, F., Nilvebrant, J., Nygren, P. Å., Ivetich, S. D., Hernandez, A. J. B., ... & Richards, D. (2023). Site-directed Conjugation of Single-Stranded DNA to Affinity Proteins: Quantifying the Importance of Conjugation Strategy.
https://chemrxiv.org/engage/chemrxiv/article-details/64d7ab2969bfb8925ad15c08
BP-20617Bis-PEG2-NHS esterPhong DL, Hui W, Dongyan T, et al. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. Journal of Molecular Biology. 2019
https://crystal.harvard.edu/wp-content/uploads/2019/09/Phong_CBF3.pdf
BP-21683Propargyl-PEG3-amineMerlo R, Caprioglio D, et al. The SNAP-tag technology revised: an effective chemo-enzymatic approach by using a universal azide-based substrate. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020. 36(1). pp. 85-97.
https://doi.org/10.1080/14756366.2020.1841182
BP-21683Propargyl-PEG3-amineMERLO, R. Thermostable DNA repair enzymes for novel biotechnological applications.
http://www.fedoa.unina.it/13902/1/Merlo_Rosa_33.pdf
BP-23309Sulfo DBCO-amineAsker, Mohammed, Jean-Philippe Krieger, Amber Liles, Ian C. Tinsley, Tito Borner, Ivana Maric, Sarah Doebley et al. Peripherally restricted oxytocin is sufficient to reduce food intake and motivation, while CNS-entry is required for locomotor and taste avoidance effects. Diabetes, Obesity, and Metabolism. 2022
https://dom-pubs.onlinelibrary.wiley.com/doi/abs/10.1111/dom.14937
BP-23738N-Mal-N-bis(PEG2-acid)Torrieri, Giulia Development of drug-loaded acetalated dextran-based nanoparticles for hear targeting and treatment of myocardial infarction. Helsingin yliopisto. 2022
https://helda.helsinki.fi/server/api/core/bitstreams/e500f246-fd3f-4f48-ad8f-85ca4dfd15a9/content
BP-24516Thiol-PEG4-alcoholAllen, N. C. (2023). Tumor targeting gold nanoparticles for delivery of RNA and DNA oligonucleotide therapies for glioblastoma.
https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=5388&context=etd
BP-24516Thiol-PEG4-alcoholAllen, Nicholas C., Rajat Chauhan, Paula J. Bates, and Martin G. O’Toole Optimization of Tumor Targeting Gold Nanoparticles for Glioblastoma Applications. Nanostructured Materials for Biological and Pharmaceutical Applications. 2022
https://www.mdpi.com/2079-4991/12/21/3869/htm
BP-20644Fmoc-PEG4-NHS esterZhou Z, Meshaw R, et al Site-Specific and Residualizing Linker for 18F-Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single Domain Antibody Fragment. Journal of Nuclear Medicine. 2021. 63(3)
https://jnm.snmjournals.org/content/early/2021/02/26/jnumed.120.261446.abstract
BP-22479TAMRA-PEG3-AzideWang, Q. Q., Sun, M., Tang, T., Lai, D. H., Liu, J., Maity, S., ... & Long, S. (2023). Functional screening reveals Toxoplasma prenylated proteins required for endocytic trafficking and rhoptry protein sorting. Mbio, 14(4), e01309-23.
https://journals.asm.org/doi/abs/10.1128/mbio.01309-23
BP-22479TAMRA-PEG3-AzideAhmadiKiall M, Suazo F, et al. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Springer: Methods in Molecular Biology Book Series - Protein Lipidation. 2019. 2009. pp. 35-43.
https://link.springer.com/protocol/10.1007/978-1-4939-9532-5_3
BP-22225Azido-PEG8-amineFeng, Jiaxu. Inhaled Dendrimer-Telmisartan Conjugate for Acute Silicosis. PhD diss., Johns Hopkins University. 2022
https://jscholarship.library.jhu.edu/handle/1774.2/67300
BP-23819Propargyl-PEG1-NHS esterHoffmann M, Hayes MR, et al. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconjugate Journal. 2020. 37. pp. 457–470.
https://link.springer.com/content/pdf/10.1007/s10719-020-09926-y.pdf
BP-22456TAMRA-PEG4-DBCOPlaks JG, Kaar JL. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization. Springer: Methods in Molecular Biology Book Series - Enzyme-Mediated Ligation Methods. 2019. 2012. pp. 279-297.
https://link.springer.com/protocol/10.1007/978-1-4939-9546-2_14
BP-22295DBCO-PEG4-biotinTurner, Rebecca Monocyte Covalent Immune Recruiters: Tools to Modulate Synthetic Immune Recognition. PhD diss.. 2022
https://macsphere.mcmaster.ca/handle/11375/27521
BP-22295DBCO-PEG4-biotinRehman AU, Anton N, et al Tunable functionalization of nano-emulsions using amphiphilic polymers. Soft Matter. 2021. 17(7). pp. 1788-1795
https://pubs.rsc.org/en/content/articlelanding/2021/sm/d0sm01952f/unauth
BP-22295DBCO-PEG4-biotinLan Y, Pan H, et al. TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Press, Cell Reports. 2019. 26(3). pp. 720-732.
https://www.sciencedirect.com/science/article/pii/S2211124718320217
BP-21659Azido-PEG5-NHS esterLee HJ, Fernandes-Cunha GM, et al. Bio-Orthogonally Crosslinked, In Situ Forming Corneal Stromal Tissue Substitute. Advanced Healthcare Materials. 2018. 7(19)..
https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201800560
BP-21659Azido-PEG5-NHS esterKrishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102.
https://www.mdpi.com/1999-4923/16/1/102
BP-22199Gambogic acidXu Q, Chu CC Development of ROS-responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. Journal of Biomedical Materials Research. 2020. 109(4). pp. 524-537
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.37035
BP-22199Gambogic acidKwan HY, Xu Q, et al Targeted Chinese Medicine Delivery by A New Family of Biodegradable Pseudo-Protein Nanoparticles for Treating Triple-Negative Breast Cancer: In Vitro and In Vivo study. Frontiers in Oncology. 2021. 10
https://www.frontiersin.org/articles/10.3389/fonc.2020.600298/full
BP-22199Gambogic acidR. Ganugula, M. Arora, S. Dwivedi, D. S. Chandrashekar, S. Varambally, E. M. Scott, and M. N. V. Ravi Kumar.Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS Nano. 2023 17 (7), 6857-6874. DOI: 10.1021/acsnano.3c00535
https://pubs.acs.org/doi/full/10.1021/acsnano.3c00535
BP-21629Fmoc-N-amido-PEG5-acidTina G, Daniel K, Christoph R, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016; 22: pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2902
BP-21629Fmoc-N-amido-PEG5-acidGoldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905
BP-21632Fmoc-N-amido-PEG12-acidTina G, Daniel K, Christoph R, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016; 22: pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2903
BP-21632Fmoc-N-amido-PEG12-acidGoldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905
BP-21988Fmoc-N-amido-PEG1-acidGoldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905
BP-22035Fmoc-N-amido-PEG20-acidGoldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599.
https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905
BP-23399Fluorescein-DBCOHull SM, Lindsay CD, et al 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007982
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007982
BP-23399Fluorescein-DBCOHull SM, Lindsay CD, et al. 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007983.
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007983
BP-20518Azido-PEG4-NHS esterHull SM, Lindsay CD, et al 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007983
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007983
BP-20518Azido-PEG4-NHS esterMapes, J. H., Stover, J., Stout, H. D., Folsom, T. M., Babcock, E., Loudwig, S., ... & Swaminathan, J. (2023). Robust and scalable single-molecule protein sequencing with fluorosequencing. bioRxiv, 2023-09.
https://www.biorxiv.org/content/10.1101/2023.09.15.558007v1.full.pdf
BP-22152Bis-Mal-PEG6Heng Y, Miriam G, Ran L, et al. Modulation and Visualization of EF-G Power Stroke During Ribosomal Translocation. ChemBioChem. 2019 December; 20(23): pp. 2927-2935.
https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.201900276
BP-21715Ald-CH2-PEG3-azideShayan, Mahdis, Michelle S. Huang, Renato Navarro, Gladys Chiang, Caroline Hu, Beu P. Oropeza, Patrik K. Johansson et al. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function. Journal of Biomedical Materials Research Part A. 2023
https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37520
BP-21715Ald-CH2-PEG3-azideSuhar RA, Doulames VM, et al Hyaluronan and Elastin-like Protein (HELP) Gels Significantly Improve Cargo Retention in the Myocardium. bioRxiv. 2021
https://www.biorxiv.org/content/10.1101/2021.10.24.465557v1.abstract
BP-21715Ald-CH2-PEG3-azideHull, Sarah M., Junzhe Lou, Christopher D. Lindsay, Renato S. Navarro, Betty Cai, Lucia G. Brunel, Ashley D. Westerfield, Yan Xia, and Sarah C. Heilshorn 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. Science Advances. 2023
https://www.science.org/doi/full/10.1126/sciadv.ade7880
BP-21099N-Boc-PEG4-alcoholSong F, Chen L, et al. Synthesis of carboxy-polyethylene glycol-amine(CA(PEG)n) and [1-14C]-CA(PEG)nvia oxa-Michael addition of amino-polyethylene glycols to propiolates vs.to acrylates. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 63(1). pp. 15-24.
https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.3816
BP-25498ALC-0315Li, Zhongyu, Xue-Qing Zhang, William Ho, Xin Bai, Dabbu Kumar Jaijyan, Fengqiao Li, Ranjeet Kumar et al. "Lipid-Polymer Hybrid “Particle-in-Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID-19 Vaccines. Advanced Functional Materials. 2022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202204462
BP-25498ALC-0315Boldyrev, I.A., Shendrikov, V.P., Vostrova, A.G. et al. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem 49, 412–415 (2023). https://doi.org/10.1134/S1068162023020061
https://link.springer.com/article/10.1134/S1068162023020061
BP-25498ALC-0315Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., Ivanov, R., & Reshetnikov, V. (2023). Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules, 13(11), 1677.
https://www.mdpi.com/2218-273X/13/11/1677
BP-25498ALC-0315Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888.
https://www.mdpi.com/1422-0067/25/2/888
BP-22218Mal-amido-PEG24-NHSFruncillo, Silvia, Yeow Teck Toh, Christopher F. Blanford, Xiaodi Su, Hong Liu, and Lu Shin Wong Lithographic Patterning of Nanoscale Arrays of the Oxidase Enzyme CotA: Effects on Activity and Stability. Advanced Functional Materials. 2022
https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202200490
BP-24149DBCO-PEG12-NHS esterMarple, April ST, Alexander H. Jesmer, Ben Lake, Anthony Rullo, and Ryan G. Wylie A Modular Antibody-Oligomer T Cell Engager for Applications in Local Therapies. Advanced Therapeutics. 2023
https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300124
BP-24149DBCO-PEG12-NHS esterMarple, A. S., Jesmer, A. H., Lake, B. P., Rullo, A. F., & Wylie, R. G. (2023). A Modular Antibody-Oligomer T Cell Engager for Applications in Local Therapies. Advanced Therapeutics, 6(11), 2300124.
https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300124
BP-22462DBCO-mPEG, MW 10,000Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8)
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902570
BP-22462DBCO-mPEG, MW 10,000Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8).
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573
BP-22463DBCO-mPEG, MW 20,000Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8)
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902571
BP-22463DBCO-mPEG, MW 20,000Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8).
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573
BP-22464DBCO-mPEG, MW 30,000Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8)
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902572
BP-22464DBCO-mPEG, MW 30,000Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8).
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573
BP-22461DBCO-mPEG, MW 5,000Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8).
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573
BP-21691Bromo-PEG5-alcoholGkikas M, Avery RK, et al. Hydrogels That Actuate Selectively in Response to Organophosphates. Advanced Functional Materials. 2016 Dec.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201602784
BP-22478Carboxyrhodamine 110-PEG3-AzideRavi S. Cellulose-based biosensors of human neutrophil elastase (HNE) toward chronic would point-of-care diagnostics. UBC Theses and Dissertions. 2020.
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0389685
BP-22478Carboxyrhodamine 110-PEG3-AzideDiner I, Dooyema J, et al. Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer’s Disease Brain. Bioconjugate Chemistry. 2017. 28(10). pp. 2627-2637.
https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.7b00500
BP-22084m-PEG6-thiolBeggiato M, Rastogi R, et al Confined Adsorption within Nanopatterns as Generic Means to Drive High Adsorption Efficiencies on Affinity Sensors. SSRN. 2022
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4010326
BP-22084m-PEG6-thiolWalker, Dale M., Tsvetelina I. Lazarova, Steven W. Riesinger, Miriam C. Poirier, Terri Messier, Brian Cunniff, and Vernon E. Walker WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Frontiers in Oncology. 2023
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1212604/full
BP-23473BDP FL DBCOTsuchiya, M., Tachibana, N., & Hamachi, I. (2023). Flow cytometric analysis of phosphatidylcholine metabolism using organelle-selective click labeling. STAR protocols, 4(3), 102525.
https://www.sciencedirect.com/science/article/pii/S2666166723004926?ref=pdf_download&fr=RR-2&rr=8528365b7b16308a
BP-23473BDP FL DBCOTsuchiya M, Tachibana N, et al Organelle-selective click labeling coupled with flow cytometry allows high-throughput CRISPR screening of genes involved in phosphatidylcholine metabolism. bioRxiv. 2022
https://www.biorxiv.org/content/10.1101/2022.04.18.488621v1.abstract
BP-22433Methyltetrazine-amine HCl saltNegrini NC, Volponi AA, et al Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomaterials Science & Engineering. 2021. 7(9). pp. 4330-4346
https://pubs.acs.org/doi/10.1021/acsbiomaterials.1c00136
BP-22738Propargyl-PEG3-bromideIan D, Jeromy D, Marla G, et al. Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer’s Disease Brain. Bioconjugate Chemistry. 2017; 28(10): pp. 2627-2637.
https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.7b00500
BP-23565N-(Azido-PEG3)-N-Boc-PEG3-NHS esterXiaofen M, Mengzhe W, Hui W, et al. Development of Bispecific NT-PSMA Heterodimer for Prostate Cancer Imaging: A Potential Approach to Address Tumor Heterogeneity. Bioconjugate Chemistry. 2019; 30(5): pp. 1314-1322.
https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.9b00252
BP-22537Cy5.5 NHS esterNishida K, Tamura A, et al. pH-Responsive Coacervate Droplets Formed from Acid-LabileMethylated Polyrotaxanes as an Injectable Protein Carrier. Biomacromolecules. 2018. 19. pp. 2238-2247.
https://pubs.acs.org/doi/abs/10.1021/acs.biomac.8b00301
BP-22537Cy5.5 NHS esterSoundaram Jeevarathinam, Ananthakrishnan, Waqas Saleem, Nya Martin, Connie Hu, and Michael J. McShane NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring. Biosensors and Bioelectronics. 2023
https://www.mdpi.com/2079-6374/13/1/141
BP-22330Acid-PEG13-NHS esterNeburkova J, Sedlak F, Zackova SJ, et al. Inhibitor–GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Mol. Pharmaceuticals. 2018; 15: pp. 2932-2945.
https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.7b00889
BP-21830PEG13Ali M, Bora S, et al. Composite-Walled Magnetic Microcapsules at the Water–Toluene Interface by Ligand Polymerization. Langmuir. 2014. 30(34). pp. 10449-10455.
https://pubs.acs.org/doi/abs/10.1021/la5018054
BP-21830PEG13Rahaman H, Nath A, et al. Fe3O4–Mn3O4 nanocomposites with moderate magnetism for in vitro cytotoxicity studies on macrophages . RSC Advances. 2016 Sep. 6(86). pp. 83146-83153 .
https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra17493k/unauth#!divAbstract
BP-21830PEG13Ali M, Barman K, et al. Fluid interface-mediated nanoparticle membrane as electrochemical sensor. RSC Advances. 2014. 4. pp. 61404-61408 .
https://pubs.rsc.org/en/content/getauthorversionpdf/C4RA12149J
BP-23344Bis-sulfone NHS EsterChiang, W., Stout, A., Yanchik-Slade, F., Li, H., Terrando, N., Nilsson, B. L., ... & Krauss, T. D. (2023). Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood–Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation. ACS Applied Nano Materials, 6(16), 15094-15107.
https://pubs.acs.org/doi/epdf/10.1021/acsanm.3c02719
BP-24511Fmoc-PEG5-alcoholJi, Fei, Moises Hur, Sungwon Hur, Siwen Wang, Priyanka Sarkar, Shiqun Shao, Desiree Aispuro Multiplex Protein Imaging through PACIFIC: Photoactive Immunofluorescence with Iterative Cleavage.. ACS bio & med Chem Au. 2023
https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00018
BP-21916Thiol-PEG12-acidYang, Lucy F., Nataly Kacherovsky, Joey Liang, Stephen J. Salipante, and Suzie H. Pun SCORe: SARS-CoV-2 Omicron Variant RBD-Binding DNA Aptamer for Multiplexed Rapid Detection and Pseudovirus Neutralization..  Analytical chemistry 94, no. 37. 2022
https://pubs.acs.org/doi/full/10.1021/acs.analchem.2c01993
BP-22946Tetrazine-NHS esterOtaru, Sofia, Andreas Paulus, Surachet Imlimthan, Iida Kuurne, Helena Virtanen, Heidi Liljenba?ck, Tuula Tolvanen et al. Development of [18F] AmBF3 Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of [18F] AmBF3-PEG7-Tyr3-Octreotide in an AR42J Pancreatic Carcinoma Model.. Bioconjugate Chemistry 33, no. 7 (2022): 1393-1404.. 2022
https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.2c00231
BP-22946Tetrazine-NHS esterOtaru, Sofia, Tatu Martinmäki, Iida Kuurne, Andreas Paulus, Kerttuli Helariutta, Mirkka Sarparanta, and Anu J. Airaksinen Radiolabelling of peptides with tetrazine ligation based on the inverse electron-demand Diels–Alder reaction: rapid, catalyst-free and mild conversion of 1, 4-dihydropyridazines to pyridazines.  RSC advances. 2023
https://pubs.rsc.org/en/content/articlehtml/2023/ra/d3ra02807k
BP-22946Tetrazine-NHS esterAlshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231.
https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849
BP-22278MMAESamantha RB, Courtney PJ, Siteng F, et al. Thiolation of Q295: Site-Specific Conjugation of Hydrophobic Payloads without the Need for Genetic Engineering. Molecular Pharmaceuticals. 2019; 16(6): pp. 2795-2805.
https://pubs.acs.org/doi/full/10.1021/acs.molpharmaceut.9b00323
BP-22417TCO-NHS esterRashid, Sk Aysha, Yixiao Dong, Hiroaki Ogasawara, Maia Vierengel, Mark Edoho Essien, and Khalid Salaita. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS Applied Materials & Interfaces. 2023
https://pubs.acs.org/doi/full/10.1021/acsami.3c04826
BP-22417TCO-NHS esterKellner, A. V., Hunter, R., Do, P., Eggert, J., Jaffe, M., Geitgey, D. K., ... & Salaita, K. (2024). The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. bioRxiv, 2024-01.
https://scholar.googleusercontent.com/scholar?q=cache:_MzjtxrMe88J:scholar.google.com/&hl=en&as_sdt=0,36
BP-23465Val-Cit-PAB-MMAEPaige E. Pistono, Paul Huang, Daniel D. Brauer, Matthew B. Francis Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties. ACS Chemical Biology. 2022
https://pubs.acs.org/doi/full/10.1021/acschembio.2c0031
BP-20981m-PEG3-acidTreat A, Henri V, et al Novel TRPV1 Modulators with Reduced Pungency Induce Analgesic Effects in Mice . ACS Omega. 2022. 7(3). pp. 2929-2946
https://pubs.acs.org/doi/full/10.1021/acsomega.1c05727
BP-20429Bis-PEG5-NHS esterJudmann, Benedikt, Diana Braun, Ralf Schirrmacher, Bjo?rn Wa?ngler, Gert Fricker, and Carmen Wa?ngler Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors.  ACS omega 7, no. 31 . 2022
https://pubs.acs.org/doi/full/10.1021/acsomega.2c03407
BP-20429Bis-PEG5-NHS esterBraun, D., Judmann, B., Cheng, X., Wa?ngler, B., Schirrmacher, R., Fricker, G., & Wa?ngler, C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin αvβ3 Targeting. ACS Omega. 2023
https://pubs.acs.org/doi/full/10.1021/acsomega.2c07484
BP-22442Sulfo-Cy5-MethyltetrazineBohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2021
https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07760
BP-22441Sulfo-Cy3-MethyltetrazineBohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2023
https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07762
BP-25659DBCO-PEG4-Val-Cit-PAB-MMAEDanielewicz, Natalia, Francesca Rosato, Jana Tomisch, Jonas Gra?ber, Birgit Wiltschi, Gerald Striedner, Winfried Ro?mer, and Juergen Mairhofer. Clickable Shiga Toxin B Subunit for Drug Delivery in Cancer Therapy.. ACS Omega. 2023
https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c00667
BP-25659DBCO-PEG4-Val-Cit-PAB-MMAEYang, Q., Chen, H., Ou, C., Zheng, Z., Zhang, X., Liu, Y., ... & Wang, L. X. (2023). Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody–Drug Conjugates. Antibodies, 12(4), 71.
https://www.mdpi.com/2073-4468/12/4/71
BP-20417Bis-PEG5-PFP esterAnouk D, Mark M, Giuseppe DI, et al. Parallel Synthesis and Screening of Peptide Conjugates. Bioconjugate Chemistry. 2014; 25(6): pp. 1052-1060.
https://pubs.acs.org/doi/pdf/10.1021/bc500129w
BP-22252Amino-PEG9-amineElijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743.
https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf
BP-22254Amino-PEG11-amineElijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743.
https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf
BP-22586Amino-PEG7-amineElijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743.
https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf
BP-24161PC Biotin-PEG3-NHS carbonate esterGupta R, Goddard NJ Reflective leaky waveguide gratings (LWGs) with internal referencing for sensing. Royal Society of Chemistry. 2022
https://pubs.rsc.org/en/content/articlehtml/2022/sd/d1sd00061f
BP-24161PC Biotin-PEG3-NHS carbonate esterGupta, Ruchi, and Nicholas J. Goddardb.  Sensors & Diagnostics. Royal Society of Chemistry. 2022
https://scholar.archive.org/work/74clr45l4bfrbnljdvdkktpw2y/access/wayback/https://pubs.rsc.org/en/content/articlepdf/2022/sd/d1sd00061f
BP-21072m-PEG4-bromideRamos-Garcés, Mario V., Dodangodage Ishara Senadheera, Karthik Arunagiri, Polyxeni P. Angelopoulou, Georgios Sakellariou, Ke Li, Bryan D. Vogt, Revati Kumar, and Christopher G. Arges Ion transport on self-assembled block copolymer electrolytes with different side chain chemistries.. Materials Advances. 2022
https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f
BP-21663Bromo-PEG3-bromidePark, S., Dahn, R.D., Kurt, E., Presle, A., VandenHeuvel, K., Moravec, C., Jambhekar, A., Olukoga, O., Shepherd, J., Echard, A. and Blower, M. The Midbody and Midbody Remnant are Assembly Sites for RNA and Localized Translation.. SSRN. 2023
https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f
BP-21663Bromo-PEG3-bromideRamos-Garcés, Mario V., Dodangodage Ishara Senadheera, Karthik Arunagiri, Polyxeni P. Angelopoulou, Georgios Sakellariou, Ke Li, Bryan D. Vogt, Revati Kumar, and Christopher G. Arges Ion transport on self-assembled block copolymer electrolytes with different side chain chemistries.. Materials Advances. 2023
https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f
BP-22221Acid-PEG9-NHS esterMeisam OM and Lobat T. Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv. 2019, 9, 33246-33256.
https://pubs.rsc.org/en/content/articlepdf/2019/ra/c9ra06279c
BP-21075Azide-PEG8-alcoholHaifei G, Cristine G, et al. Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptoror DC-SIGN. Carbohydrate Research. 2020. 487, 107877.
https://reader.elsevier.com/reader/sd/pii/S0008621519305105?token=7CAF93C4D30DCD0256B8ECE3919DE5F0DF3DCA297E84C447308093BDB6649E47CB0B4508EAB9586DCAD2230001FCE6C7
BP-22608Biotin-PEG2-NHS esterde Wispelaere M, Lian W, et al. Inhibition of Flaviviruses by Targeting a ConservedPocket on the Viral Envelope Protein. Cell chemical biology. 2018. 25(8). 1006-1016..
https://reader.elsevier.com/reader/sd/pii/S245194561830182X?token=2DA6CDAF6BED1FD47C60419A7D5264B7E7BF127910AA0F31B158EAB3B9884D4733C27777F28F1C5F5F426747C72C5734
BP-20718Bis-propargyl-PEG7Tobola F, Sylvander E, et al. ‘Clickable lectins’: bioorthogonal reactive handles facilitate the directed conjugation of lectins in a modular fashion. The Royal Society. 2019. 9(2).
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0072
BP-20718Bis-propargyl-PEG7Eleonora V, Andreas R, Philipp H, et al. New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget. 2018 Jan 12; 9(4): 5301–5320.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797051/
BP-22559Cy5 amineYueYu, Guoxin Zhang, Zhongping Li, Jia Wang, Yang Liu, Rahul Bhardwaj, Renu Wadhwa, Yuki Nagao, Mototada Shichiri, and Ran Gao Designed Fabrication ofActive Tumor Targeting Covalent Organic Framework Nanotherapeutics via a Simple Post-Synthetic Strategy. Nano Research. 2022
https://sciopen.com/article/10.1007/s12274-022-5265-7
BP-20580Azido-PEG3-amineOsuofa, J. (2023). Protein A and Multimodal Anion-Exchange Membrane Adsorbers for Downstream Purification of Therapeutic Biomolecules.
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4408&context=all_dissertations
BP-20580Azido-PEG3-amineOsuofa, J., & Husson, S. M. (2023). Preparation of Protein A Membrane Adsorbers Using Strain-Promoted, Copper-Free Dibenzocyclooctyne (DBCO)-Azide Click Chemistry. Membranes, 13(10), 824.
https://www.mdpi.com/2077-0375/13/10/824
BP-24157TCO-PEG8-NHS esterHast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2020
https://www.biorxiv.org/content/10.1101/2021.10.01.462811v0
BP-24157TCO-PEG8-NHS esterHast K, Jia Z, et al. Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2021.
https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1
BP-22435Methyltetrazine-PEG3-amine HCl saltHast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2021
https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1
BP-24087TCO-PEG24-acidHast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2019
https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1
BP-22572Cy3 hydrazideHayashi S, Iwamoto K, et al Puf3p facilitates fermentative mitochondrial functions via monosome-enriched nuclear-encoded mitochondrial mRNAs in budding yeast. bioRxiv. 2022.
https://www.biorxiv.org/content/10.1101/2022.04.10.487782v1.abstract
BP-23775Cy5 DBCOTsuchiya M, Tachibana N, et al Organelle-selective click labeling coupled with flow cytometry allows high-throughput CRISPR screening of genes involved in phosphatidylcholine metabolism. bioRxiv. 2021
https://www.biorxiv.org/content/10.1101/2022.04.18.488621v1.abstract
BP-23775Cy5 DBCORakotoarinoro, N., Dyck, Y. F., Krebs, S. K., Assi, M. K., Parr, M. K., & Stech, M. (2023). A disruptive clickable antibody design for the generation of antibody-drug conjugates. Antibody Therapeutics, 6(4), 298-310.
https://academic.oup.com/abt/article/6/4/298/7330544
BP-22877Azide-SS-biotinBridge, Haley N., Clara L. Frazier, and Amy M. Weeks. An expanded 2-pyridinecarboxaldehyde (2PCA)-based chemoproteomics toolbox for probing protease specificity.. bioRxiv. 2023
https://www.biorxiv.org/content/10.1101/2023.02.12.528234v1.full.pdf
BP-23750m-PEG3-aldehydeHemberger, Helena, Peiyuan Chai, Charlotta G. Lebedenko, Reese M. Caldwell, Benson M. George, and Ryan A. Flynn. Rapid and sensitive detection of native glycoRNAs. bioRxiv. 2023
https://www.biorxiv.org/content/10.1101/2023.02.26.530106v1.full.pdf
BP-22467Azidoacetic acid NHS esterPiranej, Selma, Luona Zhang, Alisina Bazrafshan, Mariana Marin, Gregory B. Melikyan, and Khalid Salaita. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor.. bioRxiv. 2023
https://www.biorxiv.org/content/10.1101/2023.02.27.530294v1.full.pdf
BP-22467Azidoacetic acid NHS esterVelusamy, A., Sharma, R., Rashid, S. A., Ogasawara, H., & Salaita, K. (2024). DNA mechanocapsules for programmable piconewton responsive drug delivery. Nature Communications, 15(1), 704.
https://www.nature.com/articles/s41467-023-44061-w
BP-22289DBCO-Sulfo-NHS esterGwisai, Tinotenda, Sina Guenther, Matej Vizovisek, Mira Jacobs, and Simone Schuerle Engineering living immunotherapeutic agents for improved cancer treatment. bioRxiv. 2023
https://www.biorxiv.org/content/10.1101/2023.03.31.535049v1.full.pdf
BP-22289DBCO-Sulfo-NHS esterTakeuchi, Y., Ushimaru, K., Kaneda, K. et al. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria. COMMUNICATIONS Biology. 2022 Article 5
https://www.nature.com/articles/s42003-022-04110-4#citeas
BP-22397DNP-PEG12-NHS esterRinaldi, D. A., Kanagy, W. K., Kaye, H. C., Grattan, R. M., Lucero, S. R., Perez, M. P., ... & Lidke, D. S. (2023). Antigen Geometry Tunes Mast Cell Signaling Through Distinct Fc?RI Aggregation and Structural Changes. bioRxiv, 2023-08.
https://www.biorxiv.org/content/10.1101/2023.08.04.552060v1.full
BP-22453DBCO-S-S-PEG3-biotinNorton, E. S., Whaley, L. A., Jones, V. K., Brooks, M. M., Russo, M. N., Morderer, D., ... & Guerrero-Cazares, H. (2023). Cell-specific crosstalk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. bioRxiv, 2023-08.
https://www.biorxiv.org/content/10.1101/2023.08.19.553966v1.full
BP-22453DBCO-S-S-PEG3-biotinBurgess, J.D., Amerna, D., Norton, E.S. et al. A mutant methionyl-tRNA synthetase-based toolkit to assess induced-mesenchymal stromal cell secretome in mixed-culture disease models. Stem Cell Res Ther 14, 289 (2023). https://doi.org/10.1186/s13287-023-03515-0
https://link.springer.com/article/10.1186/s13287-023-03515-0#citeas
BP-25635N-(acid-PEG10)-N-bis(PEG10-azide)Anderson, D. M., Logan, M. G., Patty, S. S., Kendall, A. J., Borland, C. Z., Pfeifer, C. S., ... & Merritt, J. L. (2023). Microbiome imaging goes à la carte: Incorporating click chemistry into the fluorescence-activating and absorption-shifting tag (FAST) imaging platform. bioRxiv, 2023-10.
https://www.biorxiv.org/content/10.1101/2023.10.02.560575v1.full
BP-22355Amino-PEG5-alcoholAfsahi SJ, Locascio LE, et al. Towards Novel Graphene-Enabled Diagnostic Assays with Improved Signal-to-Noise Ratio. MRS Advances. 2017. 2(60). pp. 3733-3739.
https://www.cambridge.org/core/journals/mrs-advances/article/towards-novel-grapheneenabled-diagnostic-assays-with-improved-signaltonoise-ratio/A507A69B296FF625258662B032C46A80
BP-22355Amino-PEG5-alcoholGoldsmith BR, Locascio L, et al. Digital Biosensing by FoundryFabricated Graphene Sensors. Scientific reports. 2019. 9(434).
https://www.nature.com/articles/s41598-019-38700-w.pdf
BP-22355Amino-PEG5-alcoholGoldsmith BR, Locascio L, et al. Digital Biosensing by Foundry-Fabricated Graphene Sensors. Scientific Reports. 2017. 12(6).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342992/
BP-25703(S, R, S)-AHPC-PEG6-NHS esterZhao, Nan, Jessica Sook Yuin Ho, Fanye Meng, Simin Zheng, Andrew P. Kurland, Lu Tian, Martha Rea-Moreno Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host & Microbe . 2023
https://www.cell.com/cell-host-microbe/pdfExtended/S1931-3128(23)00223-8
BP-22542BDP FL azideNoritsugu, Kota, Takehiro Suzuki, Kosuke Dodo, Kenji Ohgane, Yasue Ichikawa, Kota Koike, Satoshi Morita et al. Lysine long-chain fatty acylation regulates the TEAD transcription factor. Cell Reports. 2023
https://www.cell.com/cell-reports/pdf/S2211-1247(23)00399-6.pdf
BP-22538Cy7 NHS esterMorishita, M., Nagata, R., Maruoka, K., Higuchi, A., Sasaki, S., Wada, S., ... & Yamamoto, A. (2023). Lymphatic Transport and Immune Activation Effect by Locally Administered Extracellular Vesicles from Saccharomyces cerevisiae as Biocompatible Vaccine Adjuvants. Biological and Pharmaceutical Bulletin, 46(10), 1427-1434.
https://www.jstage.jst.go.jp/article/bpb/46/10/46_b23-00282/_pdf/-char/en
BP-22801PEG11Mahalingam SM, Putt KS, et al. Design of a Near Infrared Fluorescent Ureter Imaging Agent for Prevention of Ureter Damage during Abdominal Surgeries. molecules. 2021. 26(12). pp. 3739.
https://www.mdpi.com/1420-3049/26/12/3739
BP-24414Amino-PEG4-Val-Cit-PAB-MMAEZhang, Chaoyu, Wenjie Sheng, Marwah Al-Rawe, T. M. Mohiuddin, Marcus Niebert, Felix Zeppernick, Ivo Meihold-Heerlein, and Ahmad Fawzi Hussain.
https://www.mdpi.com/1422-0067/23/11/6122/htm
BP-22274Cy5 acidLee SH, Kim S, et al. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences. 2022. 23(2). pp. 1004.
https://www.mdpi.com/1422-0067/23/2/1004
BP-22274Cy5 acidMcBride, D. A. (2023). Design and Applications of Immunoregulatory Biomaterials in Autoimmune Disease (Doctoral dissertation, University of California, San Diego).
https://www.proquest.com/openview/ffda0eea9a5581770696fe76e7bae253/1?pq-origsite=gscholar&cbl=18750&diss=y
BP-22274Cy5 acidNaito M, Chaya H, et al Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(L-lysine). Journal of Controlled Release. 2021. (330). pp. 812-820
https://www.sciencedirect.com/science/article/abs/pii/S0168365921000018
BP-22274Cy5 acidJohnson, W. T., McBride, D., Kerr, M., Nguyen, A., Zoccheddu, M., Bollmann, M., ... & Shah, N. J. (2024). Immunomodulatory Nanoparticles for Modulating Arthritis Flares. ACS nano.
https://pubs.acs.org/doi/abs/10.1021/acsnano.3c05298
BP-20517Azido-PEG4-acidTallon, Carolyn, Benjamin J. Bell, Anjali Sharma, Arindom Pal, Medhinee M. Malvankar, Ajit G. Thomas, Seung-Wan Yoo et al. Dendrimer-Conjugated nSMase2 Inhibitor Reduces Tau Propagation in Mice. Pharmaceutics. 2022
https://www.mdpi.com/1999-4923/14/10/2066
BP-20517Azido-PEG4-acidTallon, Carolyn; Bell, Benjamin J; Sharma, Anjali; Pal, Arindom; Malvankar, Medhinee M; et al.  Dendrimer-Conjugated nSMase2 Inhibitor Reduces Tau Propagation in Mice. Pharmaceutics. 2022 Vol 12, Iss 10
https://www.proquest.com/openview/1fb23c42177a78fb789c1971290de0ae/1?pq-origsite=gscholar&cbl=2032349
BP-20517Azido-PEG4-acidOwoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University).
https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y
BP-20517Azido-PEG4-acidBataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega.
https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486
BP-23310Sulfo DBCO-PEG4-aminePorcello A, Gonzalez-Fernandez P, et al Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics. 2022. 14(3). pp. 659
https://www.mdpi.com/1999-4923/14/3/659
BP-23310Sulfo DBCO-PEG4-aminePorcello, Alexandre, Paula Gonzalez-Fernandez, Annick Jeannerat, Cédric Peneveyre, Philippe Abdel-Sayed, Corinne Scaletta, Wassim Raffoul Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics . 2023
https://www.mdpi.com/1999-4923/15/5/1528
BP-22851endo-BCN-PEG4-NHS esterJiang, Yaqun, Yu Long, Hao Ji, Pengxin Qiao, Qingyao Liu, Xiaotian Xia, Chunxia Qin, Yongxue Zhang, Xiaoli Lan, and Yongkang Gai Development and Evaluation of a Peptide Heterodimeric Tracer Targeting CXCR4 and Integrin αvβ3 for Pancreatic Cancer Imaging. Pharmaceutics. 2022
https://www.mdpi.com/1999-4923/14/9/1791/htm
BP-22851endo-BCN-PEG4-NHS esterKim, H. S., & Zhang, Y. (2023). Generation of Bispecific Antibodies by Functionalized Poly-ADP-Ribose Polymers. Current Protocols, 3(12), e958.
https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpz1.958
BP-23368Azido-PEG3-Val-Cit-PAB-PNPGonzalez, Paulina, Sashi Debnath, Yu-An Chen, Elizabeth Hernandez, Preeti Jha, Marianna Dakanali, Jer-Tsong Hsieh, and Xiankai Sun. A Theranostic Small-Molecule Prodrug Conjugate for Neuroendocrine Prostate Cancer. Pharaceutics. 2023
https://www.mdpi.com/1999-4923/15/2/481?trk=organization_guest_main-feed-card-text
BP-23969MC-Val-Cit-PAB-MMAEEsteban C and Veysel K. Synthesis and Enhanced Cellular Uptake In Vitro of Anti-HER2 Multifunctional Gold Nanoparticles. Cancers. 2019 June; 11(6): pp. 870.
https://www.mdpi.com/2072-6694/11/6/870
BP-21638t-Boc-N-amido-PEG8-acidChen Y, Minn I, et al A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules. 2022. 12(3). 405
https://www.mdpi.com/2218-273X/12/3/405
BP-21638t-Boc-N-amido-PEG8-acidPiranej, Selma, Alisina Bazrafshan, and Khalid Salaita. Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic. Nature Nanotechnology 17, no. 5. 2022
https://www.mdpi.com/2218-273X/12/3/405/pdf?version=1647317529
BP-23302Mal-PEG8-NHS esterBulut, Aliye, Betul Z. Temur, Ceyhun E. Kirimli, Ozgul Gok, Bertan K. Balcioglu, Hasan U. Ozturk, Neval Y. Uyar, Zeynep Kanlidere, Tanil Kocagoz, and Ozge Can A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies. Biomimetics. 2023
https://www.mdpi.com/2313-7673/8/1/89
BP-22774Aminooxy-PEG3-propargylKostka, Kathrin, and Matthias Epple. Surface Functionalization of Calcium Phosphate Nanoparticles via Click Chemistry: Covalent Attachment of Proteins and Ultrasmall Gold Nanoparticles.. Chemistry 5. 2023
https://www.mdpi.com/2624-8549/5/2/72
BP-22774Aminooxy-PEG3-propargylDamm D, Kostka K, et al. Covalent coupling of HIV-1 glycoprotein trimers to biodegradable calcium phosphate nanoparticles via genetically encoded aldehyde-tags. Acta Biomaterialia. 2022. 140. pp. 586-600.
https://www.sciencedirect.com/science/article/pii/S1742706121008291
BP-23354PC Mal-NHS carbonate esterPalluk S, Arlow DH, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nature Biotechnology. 2018. 36. pp. 645-650.
https://www.nature.com/articles/Nbt.4173
BP-21880Amino-PEG16-acidZhao Z, Chen C, et al Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1304
https://www.nature.com/articles/s41467-021-22585-2
BP-21880Amino-PEG16-acidZhao Z, Chen C, et al. Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1305.
https://www.nature.com/articles/s41467-021-22585-3
BP-21502Amino-PEG8-alcoholZhao Z, Chen C, et al. Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1305.
https://www.nature.com/articles/s41467-021-22585-3
BP-21832Bis-PEG1-NHS esterWang JF, Tang YL, et al Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nature Communications. 2022. 13. 1468
https://www.nature.com/articles/s41467-022-28879-4
BP-24093Ald-Ph-PEG24-NHS esterPetitjean, Simon JL, Wenzhang Chen, Melanie Koehler, Ravikumar Jimmidi, Jinsung Yang, Danahe Mohammed, Blinera Juniku et al Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection.. Nature communications 13, no. 1. 2022
https://www.nature.com/articles/s41467-022-30313-8
BP-24093Ald-Ph-PEG24-NHS esterShang, Pengcheng, Joshua D. Simpson, Gwen M. Taylor, Danica M. Sutherland, Olivia L. Welsh, Pavithra Aravamudhan, Rita Dos Santos Natividade Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nature Communications. 2023
https://www.nature.com/articles/s41467-023-38327-6
BP-24093Ald-Ph-PEG24-NHS esterPaiva, Telmo O., Joan A. Geoghegan, and Yves F. Dufrêne High-force catch bonds between the Staphylococcus aureus surface protein SdrE and complement regulator factor H drive immune evasion. COMMUNICATIONS Biology. 2023
https://www.nature.com/articles/s42003-023-04660-1
BP-24093Ald-Ph-PEG24-NHS esterViljoen, Albertus, Alain Vercellone, Myriam Chimen, Gérald Gaibelet, Serge Mazères, Jérôme Nigou, and Yves F. Dufrêne Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition.. Science Advances. 2023
https://www.science.org/doi/full/10.1126/sciadv.adf9498
BP-20566Biotin-PEG4-NHS esterJami, Sina, Jennifer R. Deuis, Tabea Klasfauseweh, Xiaoyang Cheng, Sergey Kurdyukov, Felicity Chung, Andrei L. Okorokov Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1. 7 function.. Nature Communications. 2023
https://www.nature.com/articles/s41467-023-37963-2
BP-25553BP Fluor 488 AlkyneJami, Sina, Jennifer R. Deuis, Tabea Klasfauseweh, Xiaoyang Cheng, Sergey Kurdyukov, Felicity Chung, Andrei L. Okorokov Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1. 7 function.. Nature Communications. 2023
https://www.nature.com/articles/s41467-023-37963-2
BP-22505Azido-PEG4-beta-D-glucoseYoshikawa, Alex M., Alexandra E. Rangel, Liwei Zheng, Leighton Wan, Linus A. Hein, Amani A. Hariri, Michael Eisenstein, and H. Tom Soh. A massively parallel screening platform for converting aptamers into molecular switches.. Nature Communications. 2023
https://www.nature.com/articles/s41467-023-38105-4
BP-26809LP01Gautam, M., Jozic, A., Su, G. L. N., Herrera-Barrera, M., Curtis, A., Arrizabalaga, S., ... & Sahay, G. (2023). Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nature Communications, 14(1), 6468.
https://www.nature.com/articles/s41467-023-42189-3
BP-22826Biotin-PEG3-amineRogowski, L.W., Kim, M.J. spontaneous symmetry breaking propulsion of chemically coated magnetic microparticles. Scientific Report. 2022 Article #17646
https://www.nature.com/articles/s41598-022-21725-z#citeas
BP-22616Bis-Mal-Lysine-PEG4-acidSahsuvar, Seray, Tanil Kocagoz, Ozgul Gok, and Ozge Can In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. Scientific Reports. 2023
https://www.nature.com/articles/s41598-023-38449-3
BP-24070DOTA-PEG5-C6-DBCOKiyoshi, M., Nakakido, M., Rafique, A., Tada, M., Aoyama, M., Terao, Y., ... & Ishii-Watabe, A. (2023). Specific peptide conjugation to a therapeutic antibody leads to enhanced therapeutic potency and thermal stability by reduced Fc dynamics. Scientific Reports, 13(1), 16561.
https://www.nature.com/articles/s41598-023-43431-0
BP-21619Biotin-PEG12-NHS esterMathieu S, Fabian S, Thomas RWM et al. 1 On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. COMMUNICATIONS CHEMISTRY. 2018; 1: 84.
https://www.nature.com/articles/s42004-018-0087-y.pdf
BP-21655Bromo-PEG5-bromideVighi E, Rentsch A, et al. New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget. 2018. 9(4). 5301–5320..
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797051/
BP-22558Cy3 amineCamacho P, Fainor M, et al. Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. Journal of Biological Methods. 2021. 8(1). e146.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054918/
BP-22117Biotin-PEG8-NHS esterXie M, Yu X, et al Biocompatible surface functionalization architecture for a diamond quantum sensor. Applied Physical Sciences. 2022. 119(8). e2114186119
https://www.pnas.org/doi/10.1073/pnas.2114186119
BP-23165Propargyl-PEG2-acidSun B, Willard FS, et al Structural determinants of dual incretin receptor agonism by tirzepatide. PNAS. 2022. 119(13). e2116506119.
https://www.pnas.org/doi/abs/10.1073/pnas.2116506119
BP-22287DBCO-C6-acidOwoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University).
https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y
BP-22287DBCO-C6-acidBataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega.
https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486
BP-23954CabazitaxelOwoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University).
https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y
BP-25499SM-102Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023
https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf
BP-25499SM-102Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023
https://www.researchsquare.com/article/rs-2649244/v1
BP-24160TCO-PEG4-DBCORosato, Francesca, Rajeev Pasupuleti, Jana Tomisch, Ana Valeria Meléndez, Dajana Kolanovic, Olga N. Makshakova, Birgit Wiltschi, and Winfried Römer A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death.. Research Square. 2022
https://www.researchsquare.com/article/rs-2056554/latest.pdf
BP-25564BP Fluor 555 AzideSkop, Ahna, Sungjin Park, Randall Dahn, Elif Kurt, Adrien Presle, Kathryn VandenHeuvel, Cara Moravec et al. The midbody and midbody remnant are assembly sites for RNA and active translation. Research Square. 2022
https://www.researchsquare.com/article/rs-2256478/latest.pdf
BP-25564BP Fluor 555 AzidePark, S., Dahn, R., Kurt, E., Presle, A., VanDenHeuvel, K., Moravec, C., ... & Skop, A. R. (2023). The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Developmental cell, 58(19), 1917-1932.
https://www.cell.com/developmental-cell/pdf/S1534-5807(23)00357-X.pdf
BP-23466BDP FL-PEG5-azideNakagami, Satoru, Michitaka Notaguchi, Tatsuhiko Kondo, Satoru Okamoto, Takanori Ida, Yoshikatsu Sato, Tetsuya Higashiyama, Allen Yi-Lun Tsai, Takashi Ishida, and Shinichiro Sawa Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. Science Advances. 2023
https://www.science.org/doi/full/10.1126/sciadv.adf4803
BP-20612Azido-PEG6-acidLiaw K, Sharma R, et al Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. Journal of Controlled Release. 2021. 329. pp. 434-444
https://www.sciencedirect.com/science/article/abs/pii/S0168365920307264
BP-20612Azido-PEG6-acidZhang J, Ning Y, Zhu H, Rotile NJ, Wei H, Diyabalanage H, Hansen EC, Zhou IY, Barrett SC, Sojoodi M, Tanabe KK, Humblet V, Jasanoff A, Caravan P, Bawendi MG. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2220036120. doi: 10.1073/pnas.2220036120. Epub 2023 Apr 24. PMID: 37094132; PMCID: PMC10161015.
https://pubmed.ncbi.nlm.nih.gov/37094132/
BP-22670Propargyl-PEG1-SS-alcoholRades N, Achazi K, et al. Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release. 2019. 300. pp. 13-21.
https://www.sciencedirect.com/science/article/pii/S0168365919300616
BP-21697Amino-PEG5-acidAfsahia S, Lernera MB, et al. Novel graphene-based biosensor for early detection of Zika virus infection . Biosensors and Bioelectronics. 2018. 100. pp. 85-88.
https://www.sciencedirect.com/science/article/pii/S0956566317305869
BP-23649DM4Zhang X, Zhang C, et al. Design, synthesis and evaluation of anti-CD38 antibody drug conjugate based on Daratumumab and maytansinoid. Bioorganic & Medicinal Chemistry. 2019. 27(3). pp. 479-482.
https://www.sciencedirect.com/science/article/pii/S0968089618316201
BP-20678Propargyl-PEG3-acidAli F, Karan C, et al A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biology. 2020. 28. 101377
https://www.sciencedirect.com/science/article/pii/S2213231719308973
BP-20561DNP-PEG4-acidMary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194.
https://www.sciencedirect.com/science/article/pii/S2451945618301909
BP-20562DNP-PEG6-acidMary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194.
https://www.sciencedirect.com/science/article/pii/S2451945618301909
BP-20563DNP-PEG2-acidMary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194.
https://www.sciencedirect.com/science/article/pii/S2451945618301909
BP-20919Azido-PEG4-Amido-tri-(carboxyethoxymethyl)-methaneMary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194.
https://www.sciencedirect.com/science/article/pii/S2451945618301909
BP-20692Azido-PEG2-amineLagneau, Nathan, Pierre Tournier, Boris Halgand, François Loll, Yves Maugars, Jérôme Guicheux, Catherine Le Visage, and Vianney Delplace. Click and bioorthogonal hyaluronic acid hydrogels as an ultra-tunable platform for the investigation of cell-material interactions.. Bioactive Meterials. 2023
https://www.sciencedirect.com/science/article/pii/S2452199X22005102
BP-20692Azido-PEG2-amineTournier, P., Saint-Pé, G., Lagneau, N., Loll, F., Halgand, B., Tessier, A., ... & Delplace, V. (2023). Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space. Advanced Science, 10(30), 2300055.
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202300055
BP-21607Azido-PEG12-NHS esterHao, Dake, Jonathan Lin, Ruiwu Liu, Christopher Pivetti, Kaeli Yamashiro, Linda M. Schutzman, Junichiro Sageshima A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioactive Materials. 2023
https://www.sciencedirect.com/science/article/pii/S2452199X23001974
BP-20989Fmoc-N-amido-PEG4-acidAnderson, Caleb F., Qiong Wang, David Stern, Elissa K. Leonard, Boran Sun, Kyle J. Fergie, Chang-yong Choi et al. Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention. Matter. 2022
https://www.sciencedirect.com/science/article/pii/S2590238522006580
BP-22038t-Boc-N-amido-PEG24-acidVan der Beelen SHE, Agten SM, et al Design and synthesis of a multivalent catch-and-release assay to measure circulating FXIa. Thrombosis Research. 2021. 200. pp. 16-21
https://www.thrombosisresearch.com/article/S0049-3848(21)00010-4/fulltext
BP-22681Tetrazine-PEG5-NHS esterDinesen A, Andersen VL, Elkhashab M, Pilati D, Bech P, Fuchs E, Samuelsen TR, Winther A, Cai Y, Märcher A, Wall A, Omer M, Nielsen JS, Chudasama V, Baker JR, Gothelf KV, Wengel J, Kjems J, Howard KA. An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation. Bioconjug Chem. 2024 Jan 17. doi: 10.1021/acs.bioconjchem.3c00491. Epub ahead of print. PMID: 38231391.
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00491
BP-22681Tetrazine-PEG5-NHS esterDinesen, A., Andersen, V. L., Elkhashab, M., Pilati, D., Bech, P., Fuchs, E., ... & Howard, K. A. (2024). An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation. Bioconjugate Chemistry.
https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.3c00491
BP-25503NHS ester-PEG4-Val-Cit-PAB-MMAEHuang, C. H., Chang, E., Zheng, L., Raj, J. G. J., Wu, W., Pisani, L. J., & Daldrup-Link, H. E. (2023). Tumor protease-activated theranostic nanoparticles for MRI-guided glioblastoma therapy. Theranostics, 13(6), 1745–1758. https://doi.org/10.7150/thno.79342
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091873/
BP-26971PLA(5k)-PEG(1k)-MALHuang, K., Pitman, M., Oladosu, O., Echesabal-Chen, J., Vojtech, L., Esobi, I., ... & Stamatikos, A. (2023). The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells. Diseases, 11(3), 88.
https://www.mdpi.com/2079-9721/11/3/88
BP-40498Pomalidomide-PEG4-azideVartak, R., Deore, B., Sanhueza, C. A., & Patel, K. (2023). Cetuximab-based PROteolysis targeting chimera for effectual downregulation of NSCLC with varied EGFR mutations. International Journal of Biological Macromolecules, 252, 126413.
https://www.sciencedirect.com/science/article/abs/pii/S0141813023033093
BP-21620Biotin-PEG12-acidCallahan, A. (2023). Automated Flow Synthesis of Biomacromolecules (Doctoral dissertation, Massachusetts Institute of Technology).
https://dspace.mit.edu/handle/1721.1/152125
BP-22275Cy5-NHS esterZhang, D. (2023). Development of zein-based bionanoparticles for highly efficient targeted glioblastoma therapy and investigation of conformational dynamics of SARS-CoV-2 variants RBDs and their interactions with ACE2 by mass spectrometry.
https://theses.lib.polyu.edu.hk/handle/200/12561
BP-21948Bis-PEG25-NHS esterDuan, H., Abram, T. G., Cruz, A. R., Rooijakkers, S. H., & Geisbrecht, B. V. (2023). New Insights into the Complement Receptor of the Ig Superfamily Obtained from Structural and Functional Studies on Two Mutants. ImmunoHorizons, 7(11), 806-818.
https://journals.aai.org/immunohorizons/article/7/11/806/266490
BP-21639t-Boc-N-amido-PEG12-acidRoth, J. G., Huang, M. S., Navarro, R. S., Akram, J. T., LeSavage, B. L., & Heilshorn, S. C. (2023). Tunable hydrogel viscoelasticity modulates human neural maturation. Science Advances, 9(42), eadh8313.
https://www.science.org/doi/full/10.1126/sciadv.adh8313
BP-22037Fmoc-N-amido-PEG36-acidTong, Y., Gu, M., Luo, X., Qi, H., Jiang, W., Deng, Y., ... & Hu, Y. (2023). An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy. Journal of Controlled Release, 363, 562-573.
https://www.sciencedirect.com/science/article/abs/pii/S0168365923006557
BP-23885BDP FL-PEG4-amine TFA saltMascuch, S. J., Khatri Chhetri, B., Mojib, N., & Kubanek, J. (2023). Visualization of the chemical defense molecule formoside binding to sensory structures in a model fish predator. Journal of Experimental Biology, 226(24).
https://journals.biologists.com/jeb/article/226/24/jeb246246/339090
BP-21626Biotin-PEG11-azideMascuch, S. J., Khatri Chhetri, B., Mojib, N., & Kubanek, J. (2023). Visualization of the chemical defense molecule formoside binding to sensory structures in a model fish predator. Journal of Experimental Biology, 226(24).
https://journals.biologists.com/jeb/article/226/24/jeb246246/339090
BP-22231DBCO-NHSBertucci, A., Capelli, L., Pedrini, F., Di Pede, A. C., Bagheri, N., Fortunati, S., ... & Porchetta, A. (2023). Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a.
https://chemrxiv.org/engage/chemrxiv/article-details/6565bf5acf8b3c3cd74f4ffb
BP-23990DM1-PEG4-BCNYang, Q., Chen, H., Ou, C., Zheng, Z., Zhang, X., Liu, Y., ... & Wang, L. X. (2023). Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody–Drug Conjugates. Antibodies, 12(4), 71.
https://www.mdpi.com/2073-4468/12/4/71
BP-22429Methyltetrazine-NHS esterAlshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231.
https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849
BP-23852t-Boc-Aminooxy-PEG1-amineWang, X., Chang, W., Khosraviani, M., Phung, W., Peng, L., Cohen, S., ... & Song, A. (2023). Application of N-Terminal Site-Specific Biotin and Digoxigenin Conjugates to Clinical Anti-drug Antibody Assay Development. Bioconjugate Chemistry.
https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.3c00421
BP-21097Bromoacetamido-PEG5-azideAwuah, D., Li, L., Williams, L., Urak, R., Kujawski, M., Forman, S. J., ... & Wang, X. (2023). Ex-vivo CS1-OKT3 dual specific bivalent antibody-armed effector T cells mediate cellular immunity against multiple myeloma. Scientific Reports, 13(1), 20853.
https://www.nature.com/articles/s41598-023-47115-7
BP-23943Sulfo-Cy5.5 carboxylic acidBurden, D. L., Meyer, J. J., Michael, R. D., Anderson, S. C., Burden, H. M., Peña, S. M., ... & Keranen-Burden, L. M. (2023). Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Analytical Chemistry, 95(49), 18020-18028.
https://pubs.acs.org/doi/full/10.1021/acs.analchem.3c02329
BP-22483Sulfo-Cy5 AzideKrishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102.
https://www.mdpi.com/1999-4923/16/1/102
BP-25496DMG-PEG 2000Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888.
https://www.mdpi.com/1422-0067/25/2/888
BP-25496DMG-PEG 2000Schober, G. B., Story, S., & Arya, D. P. (2024). A careful look at lipid nanoparticle characterization: analysis of benchmark formulations for encapsulation of RNA cargo size gradient. Scientific Reports, 14(1), 2403.
https://www.nature.com/articles/s41598-024-52685-1
BP-21628Fmoc-N-amido-PEG3-acidBataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega.
https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486
BP-22584m-PEG13-NHS esterMoon, J. D., Webber, T. R., Brown, D. R., Richardson, P. M., Casey, T. M., Segalman, R. A., ... & Han, S. (2024). Nanoscale water–polymer interactions tune macroscopic diffusivity of water in aqueous poly (ethylene oxide) solutions. Chemical Science.
https://pubs.rsc.org/en/content/articlehtml/2024/sc/d3sc05377f
BP-20419Amino-PEG4-t-butyl esterElter, J. K., Lis?c?a?kova?, V., Moravec, O., Vragovic?, M., Filipova?, M., S?te?pa?nek, P., ... & Hruby?, M. (2024). Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules.
https://pubs.acs.org/doi/full/10.1021/acs.macromol.3c02600
BP-25506BP Fluor 488 MaleimideLoll, P. J., Grasty, K. C., Shultis, D. D., Guzman, N. J., & Wiener, M. C. (2024). Discovery and structural characterization of the D-box, a conserved TonB motif that couples an inner-membrane motor to outer-membrane transport. Journal of Biological Chemistry, 105723.
https://www.sciencedirect.com/science/article/pii/S0021925824000991
BP-22446Methyltetrazine-PEG4-azideKellner, A. V., Hunter, R., Do, P., Eggert, J., Jaffe, M., Geitgey, D. K., ... & Salaita, K. (2024). The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. bioRxiv, 2024-01.
https://scholar.googleusercontent.com/scholar?q=cache:_MzjtxrMe88J:scholar.google.com/&hl=en&as_sdt=0,36