SM-102
SM-102 is a synthetic ionizable lipid which is used in combination with other lipids to form lipid nanoparticles (LNP) for drug delivery. These are used for the delivery of mRNA-based COVID-19 vaccines. The pKa is 6.68. Reagent grade, for research use only.

-
Catalog:
BP-25499
-
Name:
SM-102
-
Formula:
C44H87NO5
-
MW:
710.2
-
CAS:
2089251-47-6
-
Purity:
98%
-
Ships Within:
24 Hours
-
Storage Condition:
-20°C
-
Solubility:
Ethanol, DMSO, DMF
-
Shipping:
-
Availability:
In Stock
-
NMR:
View
-
SDS:
View
Product Citations
- Bhattacharya, A., Jan, L., Burlak, O., Li, J., Upadhyay, G., Williams, K., ... & Dey, A. K. (2024). Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. npj Vaccines, 9(1), 72.
https://www.nature.com/articles/s41541-024-00865-5 - Binici, B., Rattray, Z., Schroeder, A., & Perrie, Y. (2024). The role of biological sex in pre-clinical (mouse) mRNA vaccine studies. Vaccines, 12(3), 282.
https://doi.org/10.3390/vaccines12030282 - Buckley, M., Arainga, M., Maiorino, L., Pires, I. S., Kim, B. J., Kaczmarek Michaels, K., ... & Irvine, D. J. (2024). Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. bioRxiv, 2024-06.
https://doi.org/10.1101/2024.06.21.600088 - De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208 - Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6 - McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a - Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2024). Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. bioRxiv, 2024-07.
https://doi.org/10.1101/2024.07.05.602305 - Meulewaeter, S., Aernout, I., Deprez, J., Engelen, Y., De Velder, M., Franceschini, L., ... & Lentacker, I. (2024). Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. Journal of Controlled Release, 370, 379-391.
https://www.sciencedirect.com/science/article/pii/S0168365924002815 - Ogawa, K., Aikawa, O., Tagami, T., Ito, T., Tahara, K., Kawakami, S., & Ozeki, T. (2024). Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. International Journal of Pharmaceutics, 124632.
https://www.sciencedirect.com/science/article/abs/pii/S0378517324008664 - Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023
https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf - Ruppl, A., Kiesewetter, D., Strütt, F., Köll-Weber, M., Süss, R., & Allmendinger, A. (2024). Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 198, 114265.
https://www.sciencedirect.com/science/article/pii/S0939641124000912 - Saraswat, A., Vemana, H. P., Dukhande, V., & Patel, K. (2024). Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. Molecular Therapy-Nucleic Acids, 35(3).
https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00179-3 - Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023
https://www.researchsquare.com/article/rs-2649244/v1 - Shah, N., Soma, S. R., Quaye, M. B., Mahmoud, D., Ahmed, S., Malkoochi, A., & Obaid, G. (2024). A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin–Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS Applied Bio Materials.
https://pubs.acs.org/doi/full/10.1021/acsabm.4c00316 - Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433