D-Lin-MC3-DMA

D-Lin-MC3-DMA


D-Lin-MC3-DMA (MC3) is a potent synthetic ionizable lipid. Its full name is (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate. D-Lin-MC3-DMA has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs) for the delivery of siRNA, mRNA, DNA. The pKa is 6.44. Reagent grade, for research purpose.

Molecular structure of the compound BP-25497
    • Unit
    • Price
    • Qty
    • 100 MG
    • $270.00
    • 250 MG
    • $540.00
    • 1 G
    • $1090.00
    • 5 G
    • $2730.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  2. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://www.sciencedirect.com/science/article/pii/S0939641125001031
  3. Chiesa, E., Caimi, A., Bellotti, M., Giglio, A., Conti, B., Dorati, R., ... & Genta, I. (2024). Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids. Pharmaceutics, 16(4), 507.
    https://www.mdpi.com/1999-4923/16/4/507
  4. Choi, M., Jung, O., Lee, E., & Choi, J. S. (2024). Study of functional lipid nanoparticles for mRNA delivery using new ionizable tocopherol derivatives. Bulletin of the Korean Chemical Society, 45(11), 929-936.
    https://onlinelibrary.wiley.com/doi/abs/10.1002/bkcs.12909
  5. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  6. Felgner, J., Hernandez-Davies, J. E., Strahsburger, E., Silzel, E., Nakajima, R., Jain, A., ... & Liang, L. (2025). Lipid Nanoparticle Development for A Fluvid mRNA Vaccine Targeting Seasonal Influenza and SARS-CoV-2. npj Vaccines, 10(1), 123.
    https://www.nature.com/articles/s41541-025-01153-6
  7. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  8. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  9. Giacobbo, V. (2025). End-to-end optimization of lipid nanoparticle manufacturing for mRNA delivery.
    https://stax.strath.ac.uk/concern/theses/vx021f609
  10. Giménez-Warren, J., Peña, Á., Heredero, J., Mata, E., Blandín, B., de Miguel, D., ... & Martínez-Oliván, J. (2024). STAAR Lipids: A Novel Ionizable Lipid Synthetic Platform for Efficient mRNA Delivery In Vivo with Tunable Lung Targeting.
    https://doi.org/10.21203/rs.3.rs-5124244/v1
  11. Han, X., Petrova, V., Song, Y., Cheng, Y. T., Jiang, X., Zhou, H., ... & Shi, J. (2025). Lipid nanoparticle delivery of siRNA to dorsal root ganglion neurons to treat pain. bioRxiv, 2025-01.
    https://www.biorxiv.org/content/10.1101/2025.01.23.633455v1.full
  12. Hossainy, S., Kang, S., Gómez Medellín, J. E., Alpar, A. T., Refvik, K. C., Ma, Y. Y., ... & Hubbell, J. A. (2025). Thermoreversibly assembled polymersomes for highly efficient loading, processing and delivery of protein and siRNA biologics. Nature Biomedical Engineering, 1-18.
    https://www.nature.com/articles/s41551-025-01469-7
  13. Kuzucu, E. Ü., Schittny, V., Huwyler, J., & Schwarz, M. A. (2025). Capillary?Based Physicochemical Characterization of Lipid Nanoparticles. Electrophoresis.
    https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/elps.70032
  14. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  15. Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367.
    https://doi.org/10.1016/j.ijpharm.2025.125367
  16. Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04.
    https://doi.org/10.1101/2024.04.16.589801
  17. Panja, S., Zaman, L. A., Zhang, C., Patel, M., Gorantla, S., Dash, P. K., & Gendelman, H. E. Lymphoid and CXCR4 Cell Targeted Lipid Nanoparticles Facilitate HIV-1 Proviral DNA Excision. Available at SSRN 5136145.
    https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5136145
  18. Patel, N., Avery, E., Huang, Y., & Chung, E. J. (2025). Developing Therapeutically Enhanced Extracellular Vesicles for Atherosclerosis Therapy. Advanced Healthcare Materials, 2404398.
    https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202404398
  19. Sakers, S. H., Fiduccia, G., Byrne, K. E., Reddy, B. P. K., Dahlman, J. E., & Prausnitz, M. R. (2025). The effect of mRNA-lipid nanoparticle composition on stability during microneedle patch manufacturing. European Journal of Pharmaceutics and Biopharmaceutics, 114819.
    https://www.sciencedirect.com/science/article/pii/S0939641125001961
  20. Shah, S., Ranasinghe, M., Decker, J., Fraser, K., Friedman, A., Wang, Y., ... & Yao, S. (2025). Lipid Nanoparticles with Aptamers Enable Targeted mRNA Delivery to CD4? T Cells. bioRxiv, 2025-09.
    https://www.biorxiv.org/content/10.1101/2025.09.10.675359v1.full
  21. Shi, P., Liu, H., Refaat, A., Nguyen, H., Nguyen, A., Miao, K., ... & Wang, X. (2025). Innovative γ-Oryzanol and KC2 Based Lipid Nanoparticles: OryKL Platform Provides Safe and Efficient In Vivo mRNA Delivery.
    https://chemrxiv.org/engage/chemrxiv/article-details/68bfb8ed728bf9025e262993
  22. Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
    https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433