ALC-0315

ALC-0315


ALC-0315 is a synthetic amino lipid. It is a colorless oil. ALC-0315 is one of four components that form lipid nanoparticles (LNPs) in mRNA-based COVID-19 vaccines. It encapsulates and protects the fragile mRNA which is the active ingredient in these drugs. IUPAC name: [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate). The pKa is 6.09. Reagent grade, for research purpose.

Molecular structure of the compound BP-25498
    • Unit
    • Price
    • Qty
    • 50 MG
    • $285.00
    • 100 MG
    • $350.00
    • 250 MG
    • $700.00
    • 1 G
    • $1600.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Binici, B., Rattray, Z., & Perrie, Y. (2025). A comparative study of cationic lipid-enriched LNPs for mRNA vaccine delivery. International Journal of Pharmaceutics, 125941.
    https://www.sciencedirect.com/science/article/pii/S0378517325007781
  2. Boldyrev, I.A., Shendrikov, V.P., Vostrova, A.G. et al. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem 49, 412–415 (2023). https://doi.org/10.1134/S1068162023020061
    https://link.springer.com/article/10.1134/S1068162023020061
  3. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  4. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://www.sciencedirect.com/science/article/pii/S0939641125001031
  5. Casmil, I. C., Bathula, N. V., Huang, C., Wayne, C. J., Cairns, E. S., Friesen, J. J., ... & Blakney, A. K. (2025). Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Molecular Therapy, 33(2), 514-528.
    https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(24)00855-4
  6. Casmil, I. C., Friesen, J. J., Bathula, N. V., Strumpel, A., Ho, C. H., Guez, I., ... & Blakney, A. K. (2025). Divergent Delivery and Expression Kinetics of Lipid and Polymeric Nanoparticles across mRNA Modalities. Advanced Science, e08907.
    https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/advs.202508907
  7. Chen, S. P., Wang, S., Liao, S., & Blakney, A. K. (2024). Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS Bio & Med Chem Au.
    https://pubs.acs.org/doi/full/10.1021/acsbiomedchemau.4c00085
  8. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  9. De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
    https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208
  10. Estes, B. J., Gandhi, N., Von Stetina, J. R., Paudel, D., Nan, A. X., Amin, P., ... & Xie, J. (2025). Development of circular AAV cargos for targeted seamless insertion with large serine integrases. Molecular Therapy Methods & Clinical Development, 33(2).
    https://www.cell.com/molecular-therapy-family/methods/fulltext/S2329-0501(25)00085-3
  11. Gaisin, K. S., Ryabukhina, E. V., Koroev, D. O., Mikhalyov, I. I., Zhuravlev, E. S., Stepanov, G. A., ... & Vodovozova, E. L. (2025). An Ionizable Cationic Lipid for Intracellular RNA Delivery. Russian Journal of Bioorganic Chemistry, 51(5), 1982-1989.
    https://link.springer.com/article/10.1134/S1068162025602149
  12. Grigoriev, V., Korzun, T., Moses, A. S., Jozic, A., Zhu, X., Kim, J., ... & Taratula, O. (2024). Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS nano, 18(49), 33330-33347.
    https://pubs.acs.org/doi/full/10.1021/acsnano.4c06930
  13. Ho, C. H., Casmil, I. C., Sharma, M., Rees, T., Enright, K., Allan, N., & Blakney, A. K. (2025). Laminar fluid ejection device enables high yield and preservation of mRNA and SaRNA LNP formulations. Scientific Reports, 15(1), 18507.
    https://www.nature.com/articles/s41598-025-03309-9
  14. Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
    https://academic.oup.com/jpp/article/76/12/1572/7816331
  15. Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
    https://www.mdpi.com/2076-393X/13/4/370
  16. Janssens, S., Bosteels, V., Marechal, S., Cloots, E., Van Heddegem, L., Tavernier, S., ... & Le Goff, W. (2024). The unfolded protein sensor IRE1a is essential for homeostatic dendritic cell maturation.
    https://www.researchsquare.com/article/rs-4763670/v1
  17. Janssens, S., Rennen, S., Bosteels, V., De Nolf, C., Van Lil, K., Maréchal, S., ... & Lentacker, I. (2024). Lipid nanoparticles as a tool to dissect dendritic cell maturation pathways.
    https://doi.org/10.21203/rs.3.rs-5461735/v1
  18. Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
    https://www.sciencedirect.com/science/article/pii/S0378517324013437
  19. Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., Ivanov, R., & Reshetnikov, V. (2023). Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules, 13(11), 1677.
    https://www.mdpi.com/2218-273X/13/11/1677
  20. Kukushkin, I., Vasileva, O., Kunyk, D., Kolmykov, S., Sokolova, T., Muslimov, A., ... & Reshetnikov, V. (2024). Effects of Various Poly (A) Tails on Luciferase Expression. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 18(3), 263-274.
    https://link.springer.com/article/10.1134/S1990750824600055
  21. Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
    https://doi.org/10.1101/2023.11.09.565872
  22. Li, Zhongyu, Xue?Qing Zhang, William Ho, Xin Bai, Dabbu Kumar Jaijyan, Fengqiao Li, Ranjeet Kumar et al. "Lipid?Polymer Hybrid “Particle?in?Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID?19 Vaccines. Advanced Functional Materials. 2022
    https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202204462
  23. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  24. McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a
  25. Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888.
    https://www.mdpi.com/1422-0067/25/2/888
  26. Rubtsova, M., Mokrushina, Y., Andreev, D., Poteshnova, M., Shepelev, N., Koryagina, M., ... & Rubtsov, Y. (2025). A Luciferase-Based Approach for Functional Screening of 5′ and 3′ Untranslated Regions of the mRNA Component for mRNA Vaccines. Vaccines, 13(5), 530.
    https://www.mdpi.com/2076-393X/13/5/530
  27. Sakers, S. H., Fiduccia, G., Byrne, K. E., Reddy, B. P. K., Dahlman, J. E., & Prausnitz, M. R. (2025). The effect of mRNA-lipid nanoparticle composition on stability during microneedle patch manufacturing. European Journal of Pharmaceutics and Biopharmaceutics, 114819.
    https://www.sciencedirect.com/science/article/pii/S0939641125001961
  28. Shepelkova, G. S., Reshetnikov, V. V., Avdienko, V. G., Sheverev, D. V., Yeremeev, V. V., & Ivanov, R. A. IMPACT OF UNTRANSLATED mRNA SEQUENCES ON IMMUNOGENICITY OF mRNA VACCINES AGAINST M. TUBERCULOSIS IN MICE.
    https://www.researchgate.net/profile/V-Yeremeev/publication/377479822_Impact_of_untranslated_mRNA_sequences_on_immunogenicity_of_mRNA_vaccines_against_M_tuberculosis_in_mice/links/65c1cae634bbff5ba7ef9969/Impact-of-untranslated-mRNA-sequences-on-immunogenicity-of-mRNA-vaccines-against-M-tuberculosis-in-mice.pdf
  29. Shi, P., Liu, H., Refaat, A., Nguyen, H., Nguyen, A., Miao, K., ... & Wang, X. (2025). Innovative γ-Oryzanol and KC2 Based Lipid Nanoparticles: OryKL Platform Provides Safe and Efficient In Vivo mRNA Delivery.
    https://chemrxiv.org/engage/chemrxiv/article-details/68bfb8ed728bf9025e262993
  30. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://doi.org/10.1101/2025.04.21.649878
  31. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://www.biorxiv.org/content/10.1101/2025.04.21.649878v1.full
  32. Yong, S. B., Ha, M., & Cho, S. (2025). Microbiome Metabolite-Incorporated Lipid Nanoparticles Augment CD8+ T Cell Memory Potential and Immunity for mRNA Cancer Vaccines. ACS Biomaterials Science & Engineering.
    https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.5c00738
  33. Zhao, F., Luppi, B., Chao, P. H., Yang, J., Zhang, Y., Feng, R., ... & Li, S. D. (2026). Biodegradable polymers with tertiary amines enhance mRNA delivery of lipid nanoparticles via improved endosomal escape. Biomaterials, 324, 123541.
    https://www.sciencedirect.com/science/article/abs/pii/S0142961225004600