SM-102

SM-102


SM-102 is a synthetic ionizable lipid which is used in combination with other lipids to form lipid nanoparticles (LNP) for drug delivery. These are used for the delivery of mRNA-based COVID-19 vaccines. The pKa is 6.68. Reagent grade, for research purpose.

Molecular structure of the compound BP-25499
    • Unit
    • Price
    • Qty
    • 50 MG
    • $320.00
    • 100 MG
    • $550.00
    • 250 MG
    • $860.00
    • 1 G
    • $1600.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Banda, O., Adams, S. E., Omer, L., Jung, S. K., Said, H., Phoka, T., ... & Kurre, P. (2025). Restoring hematopoietic stem and progenitor cell function in Fancc−/− mice by in situ delivery of RNA lipid nanoparticles. Molecular Therapy Nucleic Acids, 36(1).
    https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00310-X
  2. Basham, C., Haney, M., Zhao, Y., Lukyanov, K. A., Kim, K., Baysal, A., ... & Ramsey, J. D. (2025). PEG-Free Tunable Poly (2-Oxazoline) Lipids Modulate LNP Biodistribution and Expression In Vivo after Intramuscular Administration. bioRxiv, 2025-06.
    https://www.biorxiv.org/content/10.1101/2025.06.05.657891v1.full
  3. Bhagchandani, S. H., Ehrenzeller, S., Pires, I. S., Chaudhary, N., Booth, C. J., Guedes de Sá, K. S., ... & Iwasaki, A. (2025). Bioactive Enhanced Adjuvant Chemokine Oligonucleotide Nanoparticles (BEACONs) for Mucosal Vaccination Against Genital Herpes. bioRxiv, 2025-07.
    https://www.biorxiv.org/content/10.1101/2025.07.31.667899v1.full
  4. Bhattacharya, A., Jan, L., Burlak, O., Li, J., Upadhyay, G., Williams, K., ... & Dey, A. K. (2024). Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. npj Vaccines, 9(1), 72.
    https://www.nature.com/articles/s41541-024-00865-5
  5. Binici, B., Borah, A., Watts, J. A., McLoughlin, D., & Perrie, Y. (2025). The influence of citrate buffer molarity on mRNA-LNPs: Exploring factors beyond general critical quality attributes. International Journal of Pharmaceutics, 668, 124942.
    https://doi.org/10.1016/j.ijpharm.2024.124942
  6. Binici, B., Rattray, Z., Schroeder, A., & Perrie, Y. (2024). The role of biological sex in pre-clinical (mouse) mRNA vaccine studies. Vaccines, 12(3), 282.
    https://doi.org/10.3390/vaccines12030282
  7. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  8. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://www.sciencedirect.com/science/article/pii/S0939641125001031
  9. Buckley, M., Arainga, M., Maiorino, L., Pires, I. S., Kim, B. J., Kaczmarek Michaels, K., ... & Irvine, D. J. (2024). Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. bioRxiv, 2024-06.
    https://doi.org/10.1101/2024.06.21.600088
  10. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  11. De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
    https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208
  12. Edmonds, K. K., Wilkinson, M. E., Strebinger, D., Chen, H., Lash, B., Schaefer, C. C., ... & Zhang, F. (2025). Structure and biochemistry-guided engineering of an all-RNA system for DNA insertion with R2 retrotransposons. Nature Communications, 16(1), 6079.
    https://www.nature.com/articles/s41467-025-61321-z
  13. Fairlamb, M., Kumru, O. S., Hickey, J. M., Elbaz, N. M., Bevernaegie, R., Vander Straten, A., ... & Volkin, D. B. (2025). Developability assessments with four mRNA-LNP vaccine formulations comparing mouse immunogenicity, structural attributes, and stability profiles. VeriXiv, 2(275), 275.
    https://verixiv.org/articles/2-275/v1?src=rss
  14. Felgner, J., Hernandez-Davies, J. E., Strahsburger, E., Silzel, E., Nakajima, R., Jain, A., ... & Liang, L. (2025). Lipid Nanoparticle Development for A Fluvid mRNA Vaccine Targeting Seasonal Influenza and SARS-CoV-2. npj Vaccines, 10(1), 123.
    https://www.nature.com/articles/s41541-025-01153-6
  15. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  16. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  17. Ghosh, A. R., Habib, R., Mishra, N., Roark, R. S., Akauliya, M., Albowaidey, A. A., ... & Batista, F. D. (2025). Rapid acquisition of HIV-1 neutralization breadth in a rhesus V2 apex germline antibody mouse model after a single bolus immunization. bioRxiv, 2025-06.
    https://www.biorxiv.org/content/10.1101/2025.06.12.659380v1.full
  18. Giacobbo, V. (2025). End-to-end optimization of lipid nanoparticle manufacturing for mRNA delivery.
    https://stax.strath.ac.uk/concern/theses/vx021f609
  19. Heiser, B. J., Lewis, M. M., Zerankeshi, M. M., Netemeyer, E. K., Hernandez, A. M., Marras, A. E., & Ghosh, D. (2025). Systematic screening of excipients to stabilize aerosolized lipid nanoparticles for enhanced mRNA delivery. RSC pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2025/pm/d5pm00061k
  20. Ho?ubowicz, R., Du, S. W., Felgner, J., Smidak, R., Choi, E. H., Palczewska, G., ... & Palczewski, K. (2024). Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nature Biomedical Engineering, 1-22.
    https://www.nature.com/articles/s41551-024-01296-2
  21. Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
    https://academic.oup.com/jpp/article/76/12/1572/7816331
  22. Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
    https://www.mdpi.com/2076-393X/13/4/370
  23. Hussain, M., Muglikar, A., Brain, D. E., Plant-Hately, A., Liptrott, N., McLoughlin, D. M., & Perrie, Y. (2025). Redefining LNP composition: phospholipid and sterol-driven modulation of mRNA expression and immune outcomes. RSC Pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2025/pm/d5pm00150a
  24. Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728.
    https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6
  25. Jalili, S., Hosn, R. R., Ko, W. C., Afshari, K., Dhinakaran, A. K., Chaudhary, N., ... & Irvine, D. J. (2025). Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. medRxiv, 2025-03.
    https://doi.org/10.1101/2025.03.17.25324099
  26. Jeon, J. H., Zhu, H., Qin, J., Wang, L., Mou, S., Langston, L. K., ... & Cui, X. (2025). Lipid Nanoparticles Formulated with a Novel Cholesterol-Tailed Ionizable Lipid Markedly Increase mRNA Delivery Both in vitro and in vivo. International Journal of Nanomedicine, 9389-9405.
    https://www.tandfonline.com/doi/full/10.2147/IJN.S527822
  27. Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
    https://www.sciencedirect.com/science/article/pii/S0378517324013437
  28. Kim, S. C., Felgner, J., Soto, M. S., Hitchcock, L., Silzel, E. K., Beares, H., ... & Wagar, L. E. (2025). Human CD4 T cells are a functional target for lipid nanoparticle-based mRNA vaccines. mBio, e02254-25.
    https://journals.asm.org/doi/full/10.1128/mbio.02254-25
  29. Kukushkin, I., Vasileva, O., Kunyk, D., Kolmykov, S., Sokolova, T., Muslimov, A., ... & Reshetnikov, V. (2024). Effects of Various Poly (A) Tails on Luciferase Expression. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 18(3), 263-274.
    https://link.springer.com/article/10.1134/S1990750824600055
  30. Lee, Y., Park, J. S., Jeon, H., Lim, S. G., Lee, D., & Koo, H. (2025). Lung-targeted delivery of TRAIL and BAK mRNA by optimized lipid nanoparticles for in vivo lung metastasis. Chemical Engineering Journal, 167379.
    https://www.sciencedirect.com/science/article/abs/pii/S138589472508218X
  31. Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
    https://doi.org/10.1101/2023.11.09.565872
  32. Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24.
    https://www.nature.com/articles/s41541-025-01079-z
  33. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  34. Ma, Y., Fung, V., VanKeulen-Miller, R., Tiwade, P. B., Narasipura, E. A., Gill, N. A., & Fenton, O. S. (2025). A Metabolite Co-Delivery Strategy to Improve mRNA Lipid Nanoparticle Delivery. ACS Applied Materials & Interfaces, 17(18), 26202-26215.
    https://pubs.acs.org/doi/abs/10.1021/acsami.4c22969
  35. Ma, Y., VanKeulen-Miller, R., & Fenton, O. S. (2025). mRNA lipid nanoparticle formulation, characterization and evaluation. Nature Protocols, 1-34.
    https://www.nature.com/articles/s41596-024-01134-4
  36. McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a
  37. Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2024). Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. bioRxiv, 2024-07.
    https://doi.org/10.1101/2024.07.05.602305
  38. Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2025). Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. Science Advances, 11(15), eadr2631.
    https://www.science.org/doi/full/10.1126/sciadv.adr2631
  39. Meulewaeter, S., Aernout, I., Deprez, J., Engelen, Y., De Velder, M., Franceschini, L., ... & Lentacker, I. (2024). Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. Journal of Controlled Release, 370, 379-391.
    https://www.sciencedirect.com/science/article/pii/S0168365924002815
  40. Ogawa, K., Aikawa, O., Tagami, T., Ito, T., Tahara, K., Kawakami, S., & Ozeki, T. (2024). Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. International Journal of Pharmaceutics, 124632.
    https://www.sciencedirect.com/science/article/abs/pii/S0378517324008664
  41. Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367.
    https://doi.org/10.1016/j.ijpharm.2025.125367
  42. Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023
    https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf
  43. Ruppl, A., Kiesewetter, D., Koell-Weber, M., Lemazurier, T., Süss, R., & Allmendinger, A. (2025). Formulation screening of lyophilized mRNA-lipid nanoparticles. International Journal of Pharmaceutics, 125272.
    https://www.sciencedirect.com/science/article/pii/S0378517325001085
  44. Ruppl, A., Kiesewetter, D., Strütt, F., Köll-Weber, M., Süss, R., & Allmendinger, A. (2024). Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 198, 114265.
    https://www.sciencedirect.com/science/article/pii/S0939641124000912
  45. Sakers, S. H., Fiduccia, G., Byrne, K. E., Reddy, B. P. K., Dahlman, J. E., & Prausnitz, M. R. (2025). The effect of mRNA-lipid nanoparticle composition on stability during microneedle patch manufacturing. European Journal of Pharmaceutics and Biopharmaceutics, 114819.
    https://www.sciencedirect.com/science/article/pii/S0939641125001961
  46. Sakers, S. H., Reddy, B. P. K., Fiduccia, G., Byrne, K. E., Stén, I., Kim, J., ... & Prausnitz, M. R. (2025). Development of a microneedle patch for delivery of mRNA-lipid nanoparticles. Drug Delivery and Translational Research, 1-16.
    https://link.springer.com/article/10.1007/s13346-025-01964-z
  47. Saraswat, A., Vemana, H. P., Dukhande, V., & Patel, K. (2024). Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. Molecular Therapy-Nucleic Acids, 35(3).
    https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00179-3
  48. Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023
    https://www.researchsquare.com/article/rs-2649244/v1
  49. Shah, N., Soma, S. R., Quaye, M. B., Mahmoud, D., Ahmed, S., Malkoochi, A., & Obaid, G. (2024). A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin–Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS Applied Bio Materials.
    https://pubs.acs.org/doi/full/10.1021/acsabm.4c00316
  50. Shah, S., Ranasinghe, M., Decker, J., Fraser, K., Friedman, A., Wang, Y., ... & Yao, S. (2025). Lipid Nanoparticles with Aptamers Enable Targeted mRNA Delivery to CD4? T Cells. bioRxiv, 2025-09.
    https://www.biorxiv.org/content/10.1101/2025.09.10.675359v1.full
  51. Shin, J. E., Won, E. J., Xu, J., Lee, J. C., Bang, J. K., Mitchell, M. J., & Cha-Molstad, H. (2025). Transition temperature-guided design of lipid nanoparticles for effective mRNA delivery. ACS Applied Materials & Interfaces, 17(19), 28012-28024.
    https://pubs.acs.org/doi/full/10.1021/acsami.5c06464
  52. Shinkai, T., Ogawa, K., Tagami, T., & Ozeki, T. (2024). Cholic acid-mediated targeting of mRNA-LNPs improve the mRNA delivery to Caco-2 cells. Journal of Nanoparticle Research, 26(11), 1-12.
    https://link.springer.com/article/10.1007/s11051-024-06161-6
  53. Tatsuno, K., Vassall, A., Hanlon, D., Pitruzzello, M., Robinson, E., Sobolev, O., ... & Edelson, R. (2025). An anti-cancer cell therapy platform utilizing ex vivo physiologic dendritic cells expressing mRNA-encoded antigens and immune checkpoint blockers.
    https://www.researchsquare.com/article/rs-6480245/v1
  54. Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
    https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433
  55. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://doi.org/10.1101/2025.04.21.649878
  56. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://www.biorxiv.org/content/10.1101/2025.04.21.649878v1.full
  57. Zhao, F., Luppi, B., Chao, P. H., Yang, J., Zhang, Y., Feng, R., ... & Li, S. D. (2026). Biodegradable polymers with tertiary amines enhance mRNA delivery of lipid nanoparticles via improved endosomal escape. Biomaterials, 324, 123541.
    https://www.sciencedirect.com/science/article/abs/pii/S0142961225004600